%% The contents of this file are subject to the Erlang Public License, %% Version 1.1, (the "License"); you may not use this file except in %% compliance with the License. You should have received a copy of the %% Erlang Public License along with this software. If not, it can be %% retrieved via the world wide web at http://www.erlang.org/. %% %% Software distributed under the License is distributed on an "AS IS" %% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See %% the License for the specific language governing rights and limitations %% under the License. %% -module(etbloom). -author("Paulo Sergio Almeida "). -export([sbf/1, sbf/2, sbf/3, sbf/4, bloom/1, bloom/2, member/2, add/2, size/1, capacity/1]). -export([is_element/2, add_element/2]). % alternative names -import(math, [log/1, pow/2]). is_element(E, B) -> member(E, B). add_element(E, B) -> add(E, B). %% Based on %% Scalable Bloom Filters %% Paulo Sérgio Almeida, Carlos Baquero, Nuno Preguiça, David Hutchison %% Information Processing Letters %% Volume 101, Issue 6, 31 March 2007, Pages 255-261 %% %% Provides scalable bloom filters that can grow indefinitely while %% ensuring a desired maximum false positive probability. Also provides %% standard partitioned bloom filters with a maximum capacity. Bit arrays %% are dimensioned as a power of 2 to enable reusing hash values across %% filters through bit operations. Double hashing is used (no need for %% enhanced double hashing for partitioned bloom filters). %% -record(bloom, { e, % error probability n, % maximum number of elements mb, % 2^mb = m, the size of each slice (bitvector) size, % number of elements a % list of bitvectors }). -record(sbf, { e, % error probability r, % error probability ratio s, % log 2 of growth ratio size, % number of elements b % list of plain bloom filters }). %% Constructors for (fixed capacity) bloom filters %% %% N - capacity %% E - error probability bloom(L) when is_list(L) -> lists:foldl(fun(X, Bloom) -> add(X, Bloom) end, bloom(length(L)), L); bloom(N) when is_integer(N) -> bloom(N, 0.001). bloom(N, E) when is_number(N), N > 0, is_float(E), E > 0, E < 1, N >= 4 / E -> % rule of thumb; due to double hashing bloom(size, N, E). bloom(Mode, Dim, E) -> K = 1 + trunc(log2(1 / E)), P = pow(E, 1 / K), case Mode of size -> Mb = 1 + trunc(-log2(1 - pow(1 - P, 1 / Dim))); bits -> Mb = Dim end, M = 1 bsl Mb, N = trunc(log(1 - P) / log(1 - 1 / M)), #bloom{e = E, n = N, mb = Mb, size = 0, a = [hipe_bifs:bitarray(1 bsl Mb, false) || _ <- lists:seq(1, K)]}. log2(X) -> log(X) / log(2). %% Constructors for scalable bloom filters %% %% N - initial capacity before expanding %% E - error probability %% S - growth ratio when full (log 2) can be 1, 2 or 3 %% R - tightening ratio of error probability sbf(N) -> sbf(N, 0.001). sbf(N, E) -> sbf(N, E, 1). sbf(N, E, 1) -> sbf(N, E, 1, 0.85); sbf(N, E, 2) -> sbf(N, E, 2, 0.75); sbf(N, E, 3) -> sbf(N, E, 3, 0.65). sbf(N, E, S, R) when is_number(N), N > 0, is_float(E), E > 0, E < 1, is_integer(S), S > 0, S < 4, is_float(R), R > 0, R < 1, N >= 4 / (E * (1 - R)) -> % rule of thumb; due to double hashing #sbf{e = E, s = S, r = R, size = 0, b = [bloom(N, E * (1 - R))]}. %% Returns number of elements %% size(#bloom{size = Size}) -> Size; size(#sbf{size = Size}) -> Size. %% Returns capacity %% capacity(#bloom{n = N}) -> N; capacity(#sbf{}) -> infinity. %% Test for membership %% member(Elem, #bloom{mb = Mb} = B) -> Hashes = make_hashes(Mb, Elem), hash_member(Hashes, B); member(Elem, #sbf{b = [H | _]} = Sbf) -> Hashes = make_hashes(H#bloom.mb, Elem), hash_member(Hashes, Sbf). hash_member(Hashes, #bloom{mb = Mb, a = A}) -> Mask = 1 bsl Mb - 1, {I1, I0} = make_indexes(Mask, Hashes), all_set(Mask, I1, I0, A); hash_member(Hashes, #sbf{b = B}) -> lists:any(fun(X) -> hash_member(Hashes, X) end, B). make_hashes(Mb, E) when Mb =< 16 -> erlang:phash2({E}, 1 bsl 32); make_hashes(Mb, E) when Mb =< 32 -> {erlang:phash2({E}, 1 bsl 32), erlang:phash2([E], 1 bsl 32)}. make_indexes(Mask, {H0, H1}) when Mask > 1 bsl 16 -> masked_pair(Mask, H0, H1); make_indexes(Mask, {H0, _}) -> make_indexes(Mask, H0); make_indexes(Mask, H0) -> masked_pair(Mask, H0 bsr 16, H0). masked_pair(Mask, X, Y) -> {X band Mask, Y band Mask}. all_set(_Mask, _I1, _I, []) -> true; all_set(Mask, I1, I, [H | T]) -> case hipe_bifs:bitarray_sub(H, I) of true -> all_set(Mask, I1, (I + I1) band Mask, T); false -> false end. %% Adds element to set %% add(Elem, #bloom{mb = Mb} = B) -> Hashes = make_hashes(Mb, Elem), hash_add(Hashes, B); add(Elem, #sbf{size = Size, r = R, s = S, b = [H | T] = Bs} = Sbf) -> #bloom{mb = Mb, e = E, n = N, size = HSize} = H, Hashes = make_hashes(Mb, Elem), case hash_member(Hashes, Sbf) of true -> Sbf; false -> case HSize < N of true -> Sbf#sbf{size = Size + 1, b = [hash_add(Hashes, H) | T]}; false -> B = add(Elem, bloom(bits, Mb + S, E * R)), Sbf#sbf{size = Size + 1, b = [B | Bs]} end end. hash_add(Hashes, #bloom{mb = Mb, a = A, size = Size} = B) -> Mask = 1 bsl Mb - 1, {I1, I0} = make_indexes(Mask, Hashes), case all_set(Mask, I1, I0, A) of true -> B; false -> B#bloom{size = Size + 1, a = set_bits(Mask, I1, I0, A, [])} end. set_bits(_Mask, _I1, _I, [], Acc) -> lists:reverse(Acc); set_bits(Mask, I1, I, [H | T], Acc) -> set_bits(Mask, I1, (I + I1) band Mask, T, [hipe_bifs:bitarray_update(H, I, true) | Acc]).