ejabberd-contrib/mod_pottymouth/deps/etbloom/src/etbloom.erl

175 lines
5.6 KiB
Erlang
Raw Normal View History

2016-06-24 17:34:37 +02:00
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved via the world wide web at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
-module(etbloom).
-author("Paulo Sergio Almeida <psa@di.uminho.pt>").
-export([sbf/1, sbf/2, sbf/3, sbf/4,
bloom/1, bloom/2,
member/2, add/2,
size/1, capacity/1]).
-export([is_element/2, add_element/2]). % alternative names
-import(math, [log/1, pow/2]).
is_element(E, B) -> member(E, B).
add_element(E, B) -> add(E, B).
%% Based on
%% Scalable Bloom Filters
%% Paulo Sérgio Almeida, Carlos Baquero, Nuno Preguiça, David Hutchison
%% Information Processing Letters
%% Volume 101, Issue 6, 31 March 2007, Pages 255-261
%%
%% Provides scalable bloom filters that can grow indefinitely while
%% ensuring a desired maximum false positive probability. Also provides
%% standard partitioned bloom filters with a maximum capacity. Bit arrays
%% are dimensioned as a power of 2 to enable reusing hash values across
%% filters through bit operations. Double hashing is used (no need for
%% enhanced double hashing for partitioned bloom filters).
%%
-record(bloom, {
e, % error probability
n, % maximum number of elements
mb, % 2^mb = m, the size of each slice (bitvector)
size, % number of elements
a % list of bitvectors
}).
-record(sbf, {
e, % error probability
r, % error probability ratio
s, % log 2 of growth ratio
size, % number of elements
b % list of plain bloom filters
}).
%% Constructors for (fixed capacity) bloom filters
%%
%% N - capacity
%% E - error probability
bloom(L) when is_list(L) -> lists:foldl(fun(X, Bloom) -> add(X, Bloom) end, bloom(length(L)), L);
bloom(N) when is_integer(N) -> bloom(N, 0.001).
bloom(N, E) when is_number(N), N > 0,
is_float(E), E > 0, E < 1,
N >= 4 / E -> % rule of thumb; due to double hashing
bloom(size, N, E).
bloom(Mode, Dim, E) ->
K = 1 + trunc(log2(1 / E)),
P = pow(E, 1 / K),
case Mode of
size -> Mb = 1 + trunc(-log2(1 - pow(1 - P, 1 / Dim)));
bits -> Mb = Dim
end,
M = 1 bsl Mb,
N = trunc(log(1 - P) / log(1 - 1 / M)),
#bloom{e = E, n = N, mb = Mb, size = 0,
a = [bitarray:new(1 bsl Mb, false) || _ <- lists:seq(1, K)]}.
2016-06-24 17:34:37 +02:00
log2(X) -> log(X) / log(2).
%% Constructors for scalable bloom filters
%%
%% N - initial capacity before expanding
%% E - error probability
%% S - growth ratio when full (log 2) can be 1, 2 or 3
%% R - tightening ratio of error probability
sbf(N) -> sbf(N, 0.001).
sbf(N, E) -> sbf(N, E, 1).
sbf(N, E, 1) -> sbf(N, E, 1, 0.85);
sbf(N, E, 2) -> sbf(N, E, 2, 0.75);
sbf(N, E, 3) -> sbf(N, E, 3, 0.65).
sbf(N, E, S, R) when is_number(N), N > 0,
is_float(E), E > 0, E < 1,
is_integer(S), S > 0, S < 4,
is_float(R), R > 0, R < 1,
N >= 4 / (E * (1 - R)) -> % rule of thumb; due to double hashing
#sbf{e = E, s = S, r = R, size = 0, b = [bloom(N, E * (1 - R))]}.
%% Returns number of elements
%%
size(#bloom{size = Size}) -> Size;
size(#sbf{size = Size}) -> Size.
%% Returns capacity
%%
capacity(#bloom{n = N}) -> N;
capacity(#sbf{}) -> infinity.
%% Test for membership
%%
member(Elem, #bloom{mb = Mb} = B) ->
Hashes = make_hashes(Mb, Elem),
hash_member(Hashes, B);
member(Elem, #sbf{b = [H | _]} = Sbf) ->
Hashes = make_hashes(H#bloom.mb, Elem),
hash_member(Hashes, Sbf).
hash_member(Hashes, #bloom{mb = Mb, a = A}) ->
Mask = 1 bsl Mb - 1,
{I1, I0} = make_indexes(Mask, Hashes),
all_set(Mask, I1, I0, A);
hash_member(Hashes, #sbf{b = B}) ->
lists:any(fun(X) -> hash_member(Hashes, X) end, B).
make_hashes(Mb, E) when Mb =< 16 ->
erlang:phash2({E}, 1 bsl 32);
make_hashes(Mb, E) when Mb =< 32 ->
{erlang:phash2({E}, 1 bsl 32), erlang:phash2([E], 1 bsl 32)}.
make_indexes(Mask, {H0, H1}) when Mask > 1 bsl 16 -> masked_pair(Mask, H0, H1);
make_indexes(Mask, {H0, _}) -> make_indexes(Mask, H0);
make_indexes(Mask, H0) -> masked_pair(Mask, H0 bsr 16, H0).
masked_pair(Mask, X, Y) -> {X band Mask, Y band Mask}.
all_set(_Mask, _I1, _I, []) -> true;
all_set(Mask, I1, I, [H | T]) ->
case bitarray:sub(H, I) of
2016-06-24 17:34:37 +02:00
true -> all_set(Mask, I1, (I + I1) band Mask, T);
false -> false
end.
%% Adds element to set
%%
add(Elem, #bloom{mb = Mb} = B) ->
Hashes = make_hashes(Mb, Elem),
hash_add(Hashes, B);
add(Elem, #sbf{size = Size, r = R, s = S, b = [H | T] = Bs} = Sbf) ->
#bloom{mb = Mb, e = E, n = N, size = HSize} = H,
Hashes = make_hashes(Mb, Elem),
case hash_member(Hashes, Sbf) of
true -> Sbf;
false ->
case HSize < N of
true -> Sbf#sbf{size = Size + 1, b = [hash_add(Hashes, H) | T]};
false ->
B = add(Elem, bloom(bits, Mb + S, E * R)),
Sbf#sbf{size = Size + 1, b = [B | Bs]}
end
end.
hash_add(Hashes, #bloom{mb = Mb, a = A, size = Size} = B) ->
Mask = 1 bsl Mb - 1,
{I1, I0} = make_indexes(Mask, Hashes),
case all_set(Mask, I1, I0, A) of
true -> B;
false -> B#bloom{size = Size + 1, a = set_bits(Mask, I1, I0, A, [])}
end.
set_bits(_Mask, _I1, _I, [], Acc) -> lists:reverse(Acc);
set_bits(Mask, I1, I, [H | T], Acc) ->
set_bits(Mask, I1, (I + I1) band Mask, T, [bitarray:update(H, I, true) | Acc]).
2016-06-24 17:34:37 +02:00